Самые частые ошибки, которые допускают участники лотереи грин-карт (Green Card)

В начале октября каждого года в США стартует лотерея грин-карт. В этом году осталось совсем немного времени для регистрации на участие в розыгрыше — 5 ноября заявки на DV-2021 перестанут принимать, а это значит, что осталась всего неделя. Результаты будут объявлены в мае 2020 года.

Департамент иммиграции ежегодно принимает более 50 000 заявок на участие в лотереи. Более 23 миллионов человек подали заявки на иммиграционную программу США в 2018 году, в том числе четыре миллиона арабов и более двух миллионов египтян, хотя доля случайной иммиграции в этих странах составляет всего 3200 человек, согласно отчету Бюро консульских дел Государственного департамента США.

Издание Teller Report собрало несколько советов, чтобы не потерять свой шанс выиграть в лотерею, если вы хотите мигрировать в США.

Заявка на случайную иммиграционную программу бесплатна, поэтому заявителю не требуется посредник для участия в программе.

Ваша академическая специализация не имеет ничего общего с вашим выбором. Вы должны иметь только свидетельство о среднем образовании (среднее образование), а также подтверждение того, что вам больше 21 года на момент регистрации.

Вы не можете сохранить и заполнить данные позже, так как форма заявки предназначена для заполнения данных и представлена ​​в течение одного часа, и поэтому рекомендуется просмотреть все необходимые данные и подготовиться заранее, особенно в отношении технических характеристик фотографии.

Требования к фотографии при подаче:

Правилами заданы довольно жесткие требования к изображению человека на фотографии: строго оговорены размер головы, уровень глаз, положение головы — ее наклон и поворот, цвет фона. При этом ничего не сказано об ушах, плечах, прическе, бороде и усах, макияже.

Соответственно, можно ожидать, что программа и будет проверять только то, о чем сказано.

Если голова на фото больше или меньше нужного, повернута вправо или влево, поднята или опущена, глаза выше или ниже, чем положено — заявка будет отброшена при проверке. Если за прической не видны уши, плечи не на одном уровне, усы и борода скрывают рот, но пропорции соблюдены и человек смотрит прямо в камеру — заявка будет признана годной.

Во время этой проверки оценивается правильность фона и отсутствие теней на нем — контуры головы должны четко определяться на фоне. Тени на лице могут стать причиной дисквалификации, если программа из-за них не сможет распознать какие-то части лица.

Почему же программе так важно, чтобы какие-то параметры были непременно соблюдены (такие, как высота глаз и величина головы), а на другие она совершенно не обращает внимания?

Подготовка к первому этапу распознавания лиц

Не станет открытием утверждение, что для того, чтобы повысить свой шанс на выигрыш в лотерее, участник должен подать несколько заявок. Это запрещено правилами, однако соблазн велик, и многие люди (и организации-посредники) прибегают к различным ухищрениям, чтобы обойти запрет.

На приведенной выше иллюстрации изображена одна и та же девушка, но с разной прической. Чтобы компьютер смог понять, что это один и тот же человек, используется технология распознавания лиц (face recognition).

При проверке фотографий, поданных для участия в лотерее грин-карт, используется несколько ступеней машинного распознавания лиц. Каждый последующий алгоритм распознавания сложнее предыдущего, поэтому количество анализируемых изображений с каждым шагом уменьшается — до тех пор, пока не останется итог, те фотографии, о которых программа с почти 100-процентной уверенностью сможет сказать, что на них изображен один и тот же человек.

Распознавание реализуется на основе разработанной компанией Visionic технологии FaceIt. Главный разработчик и руководитель программы — доктор Джозеф Атик (Joseph Atick). В июне 2002 года эта компания вошла в состав Identix Inc, которая с августа 2006 года, после слияния с компанией Viisage Technology, стала работать под маркой L-1 Identity Solutions, в июле 2011 года была приобретена концерном Safran и теперь известна как MorphoTrust.

Корпорация Identix, исторически специализировавшаяся на распознавании отпечатков пальцев, приобретя фирму Visionic с ее технологией распознавания лиц, в марте 2004 года поглотила компанию Delean Vision, разработавшую методику анализа и сравнения текстуры кожи людей. Это приобретение сделало Identix мировым лидером в области идентификации человека с комплексом из трех направлений — отпечатки пальцев, лицо, кожа.

В сентябре 2004 года компания Identix Inc. выиграла тендер на поставку Государственному департаменту США автоматической системы биометрической идентификации, а также на проведение работ по развертыванию, интеграции в систему выдачи виз и дальнейшую поддержку выбранной платформы. Identix предложила DoS свою платформу ABIS 3.0 (Automated Biometric Identification System), реализованную с использованием технологии распознавания лиц FaceIt G6.

Согласно условиям контракта, создаваемая система должна была обеспечить первоначальную регистрацию около 35 млн имеющихся изображений виз; обработку около 8 млн новых виз в первый год действия контракта; обработку ежегодно не менее 10 млн заявок e-Diversity Visa; скорость обработки до 2000 сравнений в час.

Технология FaceIt используется Государственным департаментом (DoS) для проверки людей, обращающихся за получением любых виз на въезд в США. Какие конкретно методы распознавания применяются, можно увидеть из технических характеристик технологии FaceIt.

Изначально в интересах DoS использовалась технология FaceIt G6, применяющая при сравнении лиц три ступени анализа. С 2010 года платформа ABIS переведена на новую версию FaceIt — G8, дополненную еще одной ступенью, Алгоритмом сравнения иерархических графов лица (HGM) — это направление разрабатывалось Morpho, подразделением концерна Safran, в которое вошла компания L1. Логично предположить, что DoS применил это обновление в используемых им программах.

(Не следует забывать о существовании и пятой ступени распознавания — визуальной идентификации лица человеком).

Для того чтобы система могла успешно распознавать лица на фотографиях, изображения должны быть особым образом подготовлены.

Программа FaceIt работает с изображениями, соответствующими стандарту ISO/IEC 19794-5.

Рассматривается каждая приложенная к заявке на участие в лотерее грин-карт фотография и определяется ее пригодность для процесса распознавания, при этом оцениваются следующие параметры:

  • Размер головы — лицо достаточно большое?
  • Обрезка — лицо полностью видно на изображении?
  • Центрирование — лицо расположено достаточно по центру?
  • Экспозиция — не является ли изображение переэкспонированным или недоэкспонированным?
  • Глаза ясно видны — есть ли на человеке очки, и если да, глаза видны или скрыты?
  • Фокус — изображение хорошо сфокусировано?
  • Сжатие — не было ли изображение чрезмерно сжато, чтобы удалить детали кожи?
  • Текстура — содержит ли поверхность кожи текстуры, пригодные для использования в распознавания лица?
  • Разрешение — превышает ли разрешение изображения минимум, измеряемый в пикселях между глазами?


Faceness — можно ли назвать обнаруженный на изображении объект человеческим лицом, или нет?
На этапе подготовки фотографии нормализуются — компьютер поворачивает снимки так, чтобы глаза на них располагались строго горизонтально (выравнивает лицо относительно вертикальной оси) и обрезает изображения в новый размер, отсекая все лишнее. Снимки обрезаются так, чтобы расстояние между центрами глаз на всех изображениях было одинаковым, выравнивается яркость и контрастность снимков.

Электронное распознавание лиц на фотографиях

Электронное распознавание применяется только к тем выигравшим заявкам, которые были признаны годными на предыдущих этапах проверки и фотографии из которых были успешно нормализованы.

Первый проход идентификации — Векторное сравнение (VFA)

На первом этапе распознавания применяется алгоритм векторного сравнения (Vector Feature Analysis — VFA).

Суть данного метода распознавания заключается в том, программа представляет каждое анализируемое нормализованное изображение лица как линейную комбинацию других, заранее созданных специальных изображений, так называемых собственных векторов или собственных лиц («eigenfaces»). Получается код, содержащий информацию об этой комбинации. Так кодируется каждое изображение, требующее проверки.

Очень упрощенно «собственные лица» («собственные векторы») можно представить как набор неких стандартных компонентов лица, полученный путем статистического анализа, последующей выборки и обработки большого множества изображений разных лиц. При использовании данного метода принимается за аксиому, что любое человеческое лицо можно составить из «среднего лица» (компонента, который одинаков для всех лиц) прибавлением к нему определенного количества определенных «собственных лиц». Большинство лиц может быть получено сложением небольшого количества «собственных лиц».

Сравнивая затем полученные множества собственных векторов, система делает вывод о сходстве или различии исходных изображений.

Каждый файл с кодом, или шаблон, представляет собой простой список примененных собственных лиц (и процентного выражения вклада каждого лица в построенное из них изображение) и имеет совсем маленький размер, поэтому нельзя обратно восстановить изображение лица, используя лишь данные только одного этого шаблона. Однако из-за небольших размеров файлов шаблонов их сравнение между собой происходит очень и очень быстро.

После того как все файлы шаблонов готовы, программа сравнивает первую выигравшую заявку со всеми немусорными поданными. Она сравнивает шаблоны, полученные из фотографий на этапе кодирования, оценивая совпадение кодов в процентном соотношении. Если совпадение проверяемого кода с любым другим не превышает определенного значения, программа делает вывод, что дубликатов у заявки не обнаружено.

Затем программа переходит к проверке следующей заявки, также сверяя код фотографии из нее со всеми остальными кодами всех фотографий из всех поданных годных заявок. Так, одну за одной, программа проверяет все выигравшие в лотерее грин-карт заявки.

Если компьютер обнаруживает, что совпадение кодов двух сравниваемых фотографий превышает пороговое значение (это значение — один из настраиваемых параметров системы идентификации), программа делает об этом отметку и продолжает проверку исследуемого кода.

Таким образом, в результате первого прохода распознавания получаются пары (или тройки, четверки и т.д.) фотографий, которые система заподозрила в том, что на них изображен один и тот же человек.

Метод векторного сравнения — один из самых «древних» методов, применяемых для распознавания лиц. Он крайне требователен к тому, чтобы все анализируемые изображения были строго нормализованы. Значительные погрешности в принятии решения о сходстве сравниваемых лиц, свойственные данному методу, обусловленные небольшим количеством используемых собственных векторов, вынуждают применять его лишь в качестве самого грубого инструмента, основы для дальнейшего поиска дубликатов.

Второй проход идентификации — Алгоритм сравнения иерархических графов лица (HGM)

Hierarchical Graph Matching (HGM) — это алгоритм сравнения лиц на основе анализа расположения контрольных узловых точек и расстояний между ними.

На лице определяется множество, свыше 2000 точек, начиная от центров глаз, переносицы, кончика и крыльев носа, левого и правого уголков рта и так далее, которые, соединяясь между собой, образуют так называемый граф, или маску, индивидуальную для каждого лица. Расстояния между точками поочередно заносятся в файл, кодируя изображение лица и делая его пригодным для математического сравнения.

Данный метод анализа не зависит от текстуры лица, исследуя исключительно его форму. Создаваемые математические модели строятся по принципу «от крупного к мелкому», что позволяет значительно ускорить процесс сравнения файлов.

Алгоритм HGM показывает достаточно хорошие результаты распознавания применительно к программе лотереи грин-карт, где анализируются строго нормализованные качественные изображения.

Третий проход идентификации — Анализ локальных отличий (LFA)

Местным отличием (Local Feature) считается участок изображения, который отличается от других ближайших к нему соседних участков. Участок может отличаться по интенсивности, цвету или текстуре, но необязательно должен быть локализован именно по этому изменению. Местными отличиями могут быть точки, края, маленькие части изображения.

Процедура LFA описывает множество локальных взаимосвязанных значимых для восприятия полей, определяемых в каждой точке виртуальной сетки рецепторов, накладываемой на изображение лица. Эти поля различны друг от друга, оптимально складываются в исходное изображение, а на выходе различаются насколько возможно. Алгоритм создания файлов, описывающих зависимость этих полей, и последующего сравнения этих файлов является основой применяемой для проверки фотографий на грин-карт системы FaceIt.

Во время LFA программа распознает и оценивает множество локальных отличий изображения лицевых структур, вновь создавая кодированный файл. Система сравнивает созданные кодированные файлы и отмечает те, степень совпадения которых выше заранее определенного порога.

Одним из факторов, затрудняющих идентификацию лиц, является их изменчивость в зависимости от мимики. Даже небольшая полуулыбка приводит в движение большое количество мышц лица, при этом изменяются почти все расстояния между контрольными точками лица. Метод LFA, анализируя отличия локальных участков лица, к тому же определяемых с большим избытком, практически свободен от проблем, связанных с мимикой.

Четвертый проход идентификации — Анализ текстуры поверхности лица (STA)

Surface Texture Analysis (STA) следует понимать как совокупность технологий и методов идентификации с использованием фотографий, позволяющих достаточно подробно рассмотреть текстуру кожи распознаваемых лиц. Соответственно, именно качество снимков имеет первостепенное значение для успешного распознавания.

STA применяется как дальнейшее развитие метода анализа локальных отличий, позволяющее использовать для сравнения еще более мелкие детали, которыми изобилует поверхность кожи любого человека.

Как правило, анализируется зона лица, свободная от излишне густой растительности — от низа глаз до начала верхней губы.

Вкратце метод STA можно описать так: сначала определяется средняя яркость каждого пикселя как среднее значение шкалы серого окружающих его пикселей. Затем изображение лица, путем сравнения значений шкалы серого пикселей в их средней яркости, преобразуется в бинарное изображение со значениями 1 или 0, присвоенными таким пикселям, средняя яркость которых выше заданной границы значений серого.

Затем выделенная зона лица разбивается на небольшие блоки. Для каждого блока из первого сравниваемого изображения система ищет соответствующий блок во втором изображении, лучше всего совпадающий со сравниваемым блоком.

После этого оценивается непрерывность соседних блоков. Если относительное изменение позиций пары соседних блоков ниже заданного порога, они рассматриваются как непрерывные. Чем больше непрерывных пар блоков, тем больше вероятность, что анализируемые изображения принадлежат одному и тому же человеку. Эта вероятность может быть сформулирована как функция количества непрерывных пар блоков.

Анализ текстуры поверхности требует, по сравнению с другими методами распознавания, большего времени для вычислений, поэтому применяется на финальной стадии идентификации к тем изображениям, для которых имеются достаточные основания считаться принадлежащими одному и тому же человеку. По данным фирмы-разработчика, применение, как дополнения к LFA, метода STA увеличивает точность распознавания на 20—25%, позволяя уверенно отличать даже идентичных близнецов.

Распознавание ретуши фотографий для DV—lottery

При проверке заявок на участие в лотерее грин-карт, в целях пресечения изменения изображений на фотографиях с использованием специальных графических программ и иных технических средств, применяется детекция ретуши.

Инструкция к лотерее грин-карт прямо говорит, что ретушь подаваемых фотографий запрещена — заявки, в фотографиях которых были сделаны какие-либо изменения (show manipulation in any way), будут дисквалифицированы.

Для детекции ретуши (под термином «ретушь» здесь подразумеваются любые изменения в фотографии, кроме обрезки в размер) применяются специальные программы, использующие при поиске изменений сочетание нескольких алгоритмов — от цветовых преобразований с наложением различных фильтров и распознавания непрерывности цепочек блоков пикселей, образующихся при сжатии изображения в jpeg, до анализа кода jpeg-файла.

Делая любые изменения в фотографиях, следует помнить о том, что, с большой долей вероятности, ретушь будет обнаружена. Безусловно, можно попытаться затруднить детекцию ретуши распечатыванием на бумаге и сканированием измененных фотографий, фотографированием экрана монитора с отретушированным изображением и тому подобными уловками, но нужно понимать, что используемые для проверки технологии могут включать в себя инструменты защиты от подобных манипуляций.

Результат проверки фотографий для лотереи грин-карт

Однозначного ответа, изображен ли на двух разных фотографиях один и тот же человек или нет, компьютер дать не может. Он может лишь оценить вероятность такого совпадения (безусловно, вероятность может приближаться к 100%). Однако окончательное решение всегда выносит человек.

В KCC для каждого выигравшего заводится кейс (дело), куда собираются присылаемые документы и результаты проведенных проверок. Если по результату проверки фотографий у заявки обнаруживаются дубликаты (подозрение, что это дубликаты, превышает определенную величину), все эти подозрительные заявки тоже включаются в кейс, в файле описания кейса делается об этом запись, а на бумажную папку с делом наклеивается красный лейбл с указанием причины.

Укомплектованное дело пересылается в тот консульский отдел, где будет проходить интервью. На интервью консул оценит все обстоятельства дела, ознакомится с результатами проверки фотографий и визуально сравнит найденные подозрительные анкеты, видя перед собой живого человека, заявителя. Итогом будет решение — было ли нарушение правил, подавал ли заявитель несколько анкет, или нет. Соответственно, консул либо одобрит выдачу визы, либо вынесет отказ.

В первый год функционирования системы (DV-2006) системой распознавания лиц среди победивших была обнаружена 5221 мошенническая заявка.

Обман системы поиска дубликатов на лотерее грин-карт

Подача нескольких заявок одним человеком является нарушением правил лотереи, влекущим автоматическую дисквалификацию заявителя.

За ложь консулу под присягой на интервью можно получить пожизненный запрет на въезд в США.

Консул, увидев в вашем кейсе несколько поданных заявок с разными фотографиями, распознанными программой проверки, обязательно заинтересуется обстоятельствами произошедшего. Если человек примется лгать, это приведет и к отказу в визе, и к пожизненному запрету на въезд.

Проблема в том, что заявитель не может точно знать, почему консул спрашивает об этом — действительно ли программа распознала его заявки, или консул задает простой дежурный вопрос.

Исходя из этого, о способах обмана системы распознавания можно говорить исключительно теоретически, в исследовательских целях, а также для того, чтобы случайно не сделать что-то запрещенное.

Анкета

Важно не упустить свой шанс из-за досадной мелочи — ошибки в анкете или неправильном фото. Фотографии при проверке анкет уделяется ОГРОМНОЕ внимание. Как именно проверяют фотографии и почему нужно четко следовать инструкции, читайте в материале ForumDaily.

На подачу заявления на участие в лотерее не влияет въезд заявителя в Соединенные Штаты по предыдущим визам, или пребывание там во время подачи заявления, или подача заявления на визу позже.

ВАЖНО. В 2019 году в США ввели новое правило для подачи документов на участие в лотерее грин-карт. Каждый соискатель должен указать номер, серию и срок действия своего загранпаспорта. Такое нововведение поставило в тупик многих жителей стран бывшего СССР, так как стоимость документа часто не по карману среднему классу. Подробнее читайте по этой ссылке.

Для тех, кто подал документы раньше других, преимущества нет, все заявки, поданные за указанный период, будут участвовать в розыгрыше в равных пропорциях.

Получив свой номер, подтверждающий принятие формы, вы не сможете повторить попытку или подать заявку в том же году. Если подано более одной заявки с одинаковым именем, запрос автоматически удаляется.

Форма заявки включает данные мужа или жены и детей в возрасте до 21 года, и жена имеет право подать еще одну заявку с теми же данными, чтобы увеличить шансы на выигрыш.

Не каждый, кто выигрывает в лотерею, получает визу, сначала нужно успешно пройти собеседование.

Необходимые документы, которые нужно собрать перед интервью: полный список указан здесь. Все документы, которые оформлены не на английском языке, должны сопровождаться сертифицированным переводом. Ни нотариального заверения, ни апостиля не требуется.

Департамент иммиграции не ведет переписку с победителями лотереи.

Основные ошибки

Одна из основных причин, препятствующих желающим выиграть эту лотерею: неточность в предоставлении необходимой информации, особенно изображений, поскольку фото должно быть недавним, а также без всяких изменений в графических редакторах.

Многие заявки отклоняются, поскольку информация не соответствует действительности, не нужно лгать в заявке, поскольку информация, предоставленная вами как в заявке, так и на собеседовании, будет проверятся.

Изменение или потеря вашего паспорта может лишить вас иммиграционной визы, если вы выиграете, но не сможете доказать причину изменения данных, поэтому сохранение копии паспорта всегда может спасти вас в этой ситуации.

Неспособность сохранить номер подтверждения формы может лишить вас возможности эмигрировать, если вы выиграете, тем более что посольства и консульства США и Консульский центр в Центральном Кентукки не выдают эти номера.

По теме: Лотерея грин-карт: ответы на самые часто задаваемые вопросы

Неправильно написанное семейное положение может лишить вас грин-карты, например, подача заявления на иммиграцию в паре на том основании, что они вступят в брак до объявления результата лотереи.

Необходимо указать данные и предоставить фотографии детей, даже если они были от предыдущего брака, и иммигрировать с вами не планируют.

Одна из самых заметных ошибок, регистрация по стране проживания, а не рождения. Убедитесь, что в заявке вы указали страну рождения.

Добавить комментарий
Ваш email не будет опубликован. Все поля обязательные!